Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Viruses ; 14(1)2021 12 21.
Article in English | MEDLINE | ID: covidwho-2308229

ABSTRACT

Different serological assays were rapidly generated to study humoral responses against the SARS-CoV-2 Spike glycoprotein. Due to the intrinsic difficulty of working with SARS-CoV-2 authentic virus, most serological assays use recombinant forms of the Spike glycoprotein or its receptor binding domain (RBD). Cell-based assays expressing different forms of the Spike, as well as pseudoviral assays, are also widely used. To evaluate whether these assays recapitulate findings generated when the Spike is expressed in its physiological context (at the surface of the infected primary cells), we developed an intracellular staining against the SARS-CoV-2 nucleocapsid (N) to distinguish infected from uninfected cells. Human airway epithelial cells (pAECs) were infected with authentic SARS-CoV-2 D614G or Alpha variants. We observed robust cell-surface expression of the SARS-CoV-2 Spike at the surface of the infected pAECs using the conformational-independent anti-S2 CV3-25 antibody. The infected cells were also readily recognized by plasma from convalescent and vaccinated individuals and correlated with several serological assays. This suggests that the antigenicity of the Spike present at the surface of the infected primary cells is maintained in serological assays involving expression of the native full-length Spike.


Subject(s)
Cell Membrane/metabolism , Epithelial Cells/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity , Bronchioles/cytology , Cells, Cultured , Coronavirus Nucleocapsid Proteins/metabolism , Epithelial Cells/virology , HEK293 Cells , Humans , Neutralization Tests , Phosphoproteins/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
2.
Cell Rep Med ; 4(1): 100893, 2023 01 17.
Article in English | MEDLINE | ID: covidwho-2165955

ABSTRACT

COVID-19 convalescent plasmas (CCPs) are chosen for plasma therapy based on neutralizing titers and anti-Spike immunoglobulin levels. However, CCP characteristics that promote SARS-CoV-2 control are complex and incompletely defined. Using an in vivo imaging approach, we demonstrate that CCPs with low neutralizing (ID50 ≤ 1:250), but moderate to high Fc-effector activity, in contrast to those with poor Fc function, delay mortality and/or improve survival of SARS-CoV-2-challenged K18-hACE2 mice. The impact of innate immune cells on CCP efficacy depended on their residual neutralizing activity. Fractionation of a selected CCP revealed that IgG and Ig(M + A) were required during therapy, but the IgG fraction alone sufficed during prophylaxis. Finally, despite reduced neutralization, ancestral SARS-CoV-2-elicited CCPs significantly delayed Delta and Beta-induced mortality suggesting that Fc-effector functions contribute to immunity against VOCs. Thus, Fc activity of CCPs provide a second line of defense when neutralization is compromised and can serve as an important criterion for CCP selection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , COVID-19/therapy , COVID-19 Serotherapy , Treatment Outcome , Immunoglobulin G
3.
iScience ; 26(1): 105783, 2023 Jan 20.
Article in English | MEDLINE | ID: covidwho-2149918

ABSTRACT

Neutralizing antibodies (NAbs) hold great promise for clinical interventions against SARS-CoV-2 variants of concern (VOCs). Understanding NAb epitope-dependent antiviral mechanisms is crucial for developing vaccines and therapeutics against VOCs. Here we characterized two potent NAbs, EH3 and EH8, isolated from an unvaccinated pediatric patient with exceptional plasma neutralization activity. EH3 and EH8 cross-neutralize the early VOCs and mediate strong Fc-dependent effector activity in vitro. Structural analyses of EH3 and EH8 in complex with the receptor-binding domain (RBD) revealed the molecular determinants of the epitope-driven protection and VOC evasion. While EH3 represents the prevalent IGHV3-53 NAb whose epitope substantially overlaps with the ACE2 binding site, EH8 recognizes a narrow epitope exposed in both RBD-up and RBD-down conformations. When tested in vivo, a single-dose prophylactic administration of EH3 fully protected stringent K18-hACE2 mice from lethal challenge with Delta VOC. Our study demonstrates that protective NAbs responses converge in pediatric and adult SARS-CoV-2 patients.

4.
Cell Rep ; 41(4): 111554, 2022 10 25.
Article in English | MEDLINE | ID: covidwho-2104502

ABSTRACT

Due to the recrudescence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections worldwide, mainly caused by the Omicron variant of concern (VOC) and its sub-lineages, several jurisdictions are administering an mRNA vaccine boost. Here, we analyze humoral responses induced after the second and third doses of an mRNA vaccine in naive and previously infected donors who received their second dose with an extended 16-week interval. We observe that the extended interval elicits robust humoral responses against VOCs, but this response is significantly diminished 4 months after the second dose. Administering a boost to these individuals brings back the humoral responses to the same levels obtained after the extended second dose. Interestingly, we observe that administering a boost to individuals that initially received a short 3- to 4-week regimen elicits humoral responses similar to those observed in the long interval regimen. Nevertheless, humoral responses elicited by the boost in naive individuals do not reach those present in previously infected vaccinated individuals.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2 , BNT162 Vaccine , COVID-19/prevention & control , Antibodies, Viral , COVID-19 Vaccines , Vaccination
5.
Viruses ; 14(10)2022 09 30.
Article in English | MEDLINE | ID: covidwho-2066552

ABSTRACT

SARS-CoV-2 continues to infect millions of people worldwide. The subvariants arising from the variant-of-concern (VOC) Omicron include BA.1, BA.1.1, BA.2, BA.2.12.1, BA.4, and BA.5. All possess multiple mutations in their Spike glycoprotein, notably in its immunogenic receptor-binding domain (RBD), and present enhanced viral transmission. The highly mutated Spike glycoproteins from these subvariants present different degrees of resistance to recognition and cross-neutralisation by plasma from previously infected and/or vaccinated individuals. We have recently shown that the temperature affects the interaction between the Spike and its receptor, the angiotensin converting enzyme 2 (ACE2). The affinity of RBD for ACE2 is significantly increased at lower temperatures. However, whether this is also observed with the Spike of Omicron and sub-lineages is not known. Here we show that, similar to other variants, Spikes from Omicron sub-lineages bind better the ACE2 receptor at lower temperatures. Whether this translates into enhanced transmission during the fall and winter seasons remains to be determined.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , SARS-CoV-2/genetics , Temperature , Spike Glycoprotein, Coronavirus/metabolism , Peptidyl-Dipeptidase A/metabolism , Mutation
6.
Cell reports ; 2022.
Article in English | EuropePMC | ID: covidwho-2046858

ABSTRACT

Due to the recrudescence of SARS-CoV-2 infections worldwide, mainly caused by Omicron variant of concern (VOC) and its sub-lineages, several jurisdictions are administering a mRNA vaccine boost. Here, we analyze humoral responses induced after the second and third doses of mRNA vaccine in naïve and previously-infected donors who received their second dose with an extended 16-week interval. We observe that the extended interval elicits robust humoral responses against VOCs, but this response is significantly diminished 4 months after the second dose. Administering a boost to these individuals brings back the humoral responses to the same levels obtained after the extended second dose. Interestingly, we observe that administering a boost to individuals that initially received a short 3-4 weeks regimen elicits humoral responses similar to those observed in the long interval regimen. Nevertheless, humoral responses elicited by the boost in naïve individuals do not reach those present in previously-infected vaccinated individuals. Graphical In this study, Tauzin et al. report that the third dose of SARS-CoV-2 mRNA vaccine elicits strong humoral responses against VOCs in naïve individuals, regardless of the interval between the first two doses. However, these responses remain lower than those induced by hybrid immunity.

8.
iScience ; 25(7): 104528, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1945337

ABSTRACT

SARS-CoV-2 infection of host cells starts by binding the Spike glycoprotein (S) to the ACE2 receptor. The S-ACE2 interaction is a potential target for therapies against COVID-19 as demonstrated by the development of immunotherapies blocking this interaction. VE607 - a commercially available compound composed of three stereoisomers - was described as an inhibitor of SARS-CoV-1. Here, we show that VE607 broadly inhibits pseudoviral particles bearing the Spike from major VOCs (D614G, Alpha, Beta, Gamma, Delta, Omicron - BA.1, and BA.2) as well as authentic SARS-CoV-2 at low micromolar concentrations. In silico docking, mutational analysis, and smFRET revealed that VE607 binds to the receptor binding domain (RBD)-ACE2 interface and stabilizes RBD in its "up" conformation. Prophylactic treatment with VE607 did not prevent SARS-CoV-2-induced mortality in K18-hACE2 mice, but it did reduce viral replication in the lungs by 37-fold. Thus, VE607 is an interesting lead for drug development for the treatment of SARS-CoV-2 infection.

9.
Cell Rep ; 39(13): 111013, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1885674

ABSTRACT

Spacing of BNT162b2 mRNA doses beyond 3 weeks raises concerns about vaccine efficacy. We longitudinally analyze B cell, T cell, and humoral responses to two BNT162b2 mRNA doses administered 16 weeks apart in 53 SARS-CoV-2 naive and previously infected donors. This regimen elicits robust RBD-specific B cell responses whose kinetics differs between cohorts, the second dose leading to increased magnitude in naive participants only. While boosting does not increase magnitude of CD4+ T cell responses further compared with the first dose, unsupervised clustering of single-cell features reveals phenotypic and functional shifts over time and between cohorts. Integrated analysis shows longitudinal immune component-specific associations, with early T helper responses post first dose correlating with B cell responses after the second dose, and memory T helper generated between doses correlating with CD8 T cell responses after boosting. Therefore, boosting elicits a robust cellular recall response after the 16-week interval, indicating functional immune memory.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , BNT162 Vaccine , Humans , Immunity, Humoral , RNA, Messenger , SARS-CoV-2
10.
Viruses ; 14(6)2022 06 07.
Article in English | MEDLINE | ID: covidwho-1884387

ABSTRACT

Viruses use many different strategies to evade host immune responses. In the case of SARS-CoV-2, its Spike mutates rapidly to escape from neutralizing antibodies. In addition to this strategy, ORF8, a small accessory protein encoded by SARS-CoV-2, helps immune evasion by reducing the susceptibility of SARS-CoV-2-infected cells to the cytotoxic CD8+ T cell response. Interestingly, among all accessory proteins, ORF8 is rapidly evolving and a deletion in this protein has been linked to milder disease. Here, we studied the effect of ORF8 on peripheral blood mononuclear cells (PBMC). Specifically, we found that ORF8 can bind monocytes as well as NK cells. Strikingly, ORF8 binds CD16a (FcγRIIIA) with nanomolar affinity and decreases the overall level of CD16 at the surface of monocytes and, to a lesser extent, NK cells. This decrease significantly reduces the capacity of PBMCs and particularly monocytes to mediate antibody-dependent cellular cytotoxicity (ADCC). Overall, our data identifies a new immune-evasion activity used by SARS-CoV-2 to escape humoral responses.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibody-Dependent Cell Cytotoxicity , Humans , Leukocytes, Mononuclear
11.
Vaccine ; 40(26): 3633-3637, 2022 06 09.
Article in English | MEDLINE | ID: covidwho-1819620

ABSTRACT

INTRODUCTION: COVID-19 vaccine efficacy has been evaluated in large clinical trials and in real-world situation. Although they have proven to be very effective in the general population, little is known about their efficacy in immunocompromised patients. HIV-infected individuals' response to vaccine may vary according to the type of vaccine and their level of immunosuppression. We evaluated immunogenicity of an mRNA anti-SARS CoV-2 vaccine in HIV-positive individuals. METHODS: HIV-positive individuals (n = 121) were recruited from HIV clinics in Montreal and stratified according to their CD4 counts. A control group of 20 health care workers naïve to SARS CoV-2 was used. The participants' Anti-RBD IgG responses were measured by ELISA at baseline and 3-4 weeks after receiving the first dose of an mRNA vaccine). RESULTS: Eleven of 121 participants had anti-COVID-19 antibodies at baseline, and a further 4 had incomplete data for the analysis. Mean anti-RBD IgG responses were similar between the HIV negative control group (n = 20) and the combined HIV+ group (n = 106) (p = 0.72). However, these responses were significantly lower in the group with <250 CD4 cells/mm3. (p < 0.0001). Increasing age was independently associated with decreased immunogenicity. CONCLUSION: HIV-positive individuals with CD4 counts over 250 cells/mm3 have an anti-RBD IgG response similar to the general population. However, HIV-positive individuals with the lowest CD4 counts (<250 cells/mm3) have a weaker response. These data would support the hypothesis that a booster dose might be needed in this subgroup of HIV-positive individuals, depending on their response to the second dose.


Subject(s)
COVID-19 , HIV Seropositivity , HIV-1 , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunogenicity, Vaccine , Immunoglobulin G , Vaccines, Synthetic , mRNA Vaccines
12.
J Infect Dis ; 225(8): 1317-1320, 2022 04 19.
Article in English | MEDLINE | ID: covidwho-1795259

ABSTRACT

We assessed the COVID-19 pandemic's impact on treatment of latent tuberculosis, and of active tuberculosis, at 3 centers in Montreal and Toronto, using data from 10 833 patients (8685 with latent tuberculosis infection, 2148 with active tuberculosis). Observation periods prior to declarations of COVID-19 public health emergencies ranged from 219 to 744 weeks, and after declarations, from 28 to 33 weeks. In the latter period, reductions in latent tuberculosis infection treatment initiation rates ranged from 30% to 66%. At 2 centers, active tuberculosis treatment rates fell by 16% and 29%. In Canada, cornerstone measures for tuberculosis elimination weakened during the COVID-19 pandemic.


Subject(s)
COVID-19 , Latent Tuberculosis , Tuberculosis , Canada/epidemiology , Humans , Pandemics/prevention & control , SARS-CoV-2 , Tuberculosis/drug therapy , Tuberculosis/epidemiology , Tuberculosis/prevention & control
13.
Cell Rep ; 38(9): 110429, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1734242

ABSTRACT

Continuous emergence of SARS-CoV-2 variants of concern (VOCs) is fueling the COVID-19 pandemic. Omicron (B.1.1.529) rapidly spread worldwide. The large number of mutations in its Spike raise concerns about a major antigenic drift that could significantly decrease vaccine efficacy and infection-induced immunity. A long interval between BNT162b2 mRNA doses elicits antibodies that efficiently recognize Spikes from different VOCs. Here, we evaluate the recognition of Omicron Spike by plasma from a cohort of SARS-CoV-2 naive and previously infected individuals who received their BNT162b2 mRNA vaccine 16 weeks apart. Omicron Spike is recognized less efficiently than D614G, Alpha, Beta, Gamma, and Delta Spikes. We compare with plasma activity from participants receiving a short (4 weeks) interval regimen. Plasma from individuals of the long-interval cohort recognize and neutralize better the Omicron Spike compared with those who received a short interval. Whether this difference confers any clinical benefit against Omicron remains unknown.


Subject(s)
Antibodies, Neutralizing/blood , BNT162 Vaccine/administration & dosage , Immunization Schedule , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Neutralizing/analysis , Antibodies, Neutralizing/immunology , Antibodies, Viral/analysis , Antibodies, Viral/blood , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , Cohort Studies , Female , HEK293 Cells , Humans , Immunization, Secondary/methods , Male , Middle Aged , Quebec , SARS-CoV-2/pathogenicity , Time Factors , Vaccination/methods , Vaccine Potency , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Young Adult , mRNA Vaccines/administration & dosage , mRNA Vaccines/immunology
14.
Cytotechnology ; 74(1): 99-103, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1669856

ABSTRACT

The SARS-CoV-2 virus is the causing agent of the coronavirus disease 2019 (COVID-19) pandemic responsible for millions of deaths worldwide. The development of the humoral response to the virus has been the subject of intensive research. A flow cytometry-based assay using native full-length SARS-CoV-2 Spike protein expressed in 293 T cells was recently proposed as a complementary seropositivity assay. The aim of our study was to further develop the flow cytometry assay and to standardize its parameters for reliable inter-laboratory use. We have optimized the protocol, established the Receiving Operating Characteristic (ROC) curve and tested reproducibility using pre-COVID and convalescent, SARS-CoV-2 individual plasma samples. The flow-based assay was simplified and standardized by cultivating the 293 T cells in suspension and expressing results in Mean Equivalent Soluble Fluorochrome (MESF) using an internal antibody positive control. The ROC curve was determined with an area under the curve (AUC) of 0.996 and the assay specificity and sensitivity were established at 100% and 97.7% respectively. Reproducibility was good as determined on multiple cytometers, on different days, and with data acquisition as far as 72 h post-staining. The standardized assay could be used as a high throughput confirmatory assay in flow cytometry laboratories involved in serological testing. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10616-021-00511-1.

15.
Cell Rep ; 38(7): 110368, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1649284

ABSTRACT

Emerging evidence indicates that both neutralizing and Fc-mediated effector functions of antibodies contribute to protection against SARS-CoV-2. It is unclear whether Fc-effector functions alone can protect against SARS-CoV-2. Here, we isolated CV3-13, a non-neutralizing antibody, from a convalescent individual with potent Fc-mediated effector functions. The cryoelectron microscopy structure of CV3-13 in complex with the SARS-CoV-2 spike reveals that the antibody binds from a distinct angle of approach to an N-terminal domain (NTD) epitope that only partially overlaps with the NTD supersite recognized by neutralizing antibodies. CV3-13 does not alter the replication dynamics of SARS-CoV-2 in K18-hACE2 mice, but its Fc-enhanced version significantly delays virus spread, neuroinvasion, and death in prophylactic settings. Interestingly, the combination of Fc-enhanced non-neutralizing CV3-13 with Fc-compromised neutralizing CV3-25 completely protects mice from lethal SARS-CoV-2 infection. Altogether, our data demonstrate that efficient Fc-mediated effector functions can potently contribute to the in vivo efficacy of anti-SARS-CoV-2 antibodies.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , COVID-19/therapy , Animals , Antibodies, Viral/chemistry , Antibody-Dependent Cell Cytotoxicity , COVID-19/mortality , COVID-19/prevention & control , COVID-19/transmission , Disease Models, Animal , Epitopes , Humans , Immunization, Passive/mortality , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/metabolism , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/immunology , Mice , Protein Binding , Protein Conformation , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Serotherapy
16.
Viruses ; 14(1)2022 01 14.
Article in English | MEDLINE | ID: covidwho-1625073

ABSTRACT

The rapid emergence of SARS-CoV-2 variants is fueling the recent waves of the COVID-19 pandemic. Here, we assessed ACE2 binding and antigenicity of Mu (B.1.621) and A.2.5 Spikes. Both these variants carry some mutations shared by other emerging variants. Some of the pivotal mutations such as N501Y and E484K in the receptor-binding domain (RBD) detected in B.1.1.7 (Alpha), B.1.351 (Beta) and P.1 (Gamma) are now present within the Mu variant. Similarly, the L452R mutation of B.1.617.2 (Delta) variant is present in A.2.5. In this study, we observed that these Spike variants bound better to the ACE2 receptor in a temperature-dependent manner. Pseudoviral particles bearing the Spike of Mu were similarly neutralized by plasma from vaccinated individuals than those carrying the Beta (B.1.351) and Delta (B.1.617.2) Spikes. Altogether, our results indicate the importance of measuring critical parameters such as ACE2 interaction, plasma recognition and neutralization ability of each emerging variant.


Subject(s)
SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , HEK293 Cells , Humans , Mutation , Neutralization Tests , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Temperature
17.
Cytotechnology ; : 1-5, 2022.
Article in English | EuropePMC | ID: covidwho-1602514

ABSTRACT

The SARS-CoV-2 virus is the causing agent of the coronavirus disease 2019 (COVID-19) pandemic responsible for millions of deaths worldwide. The development of the humoral response to the virus has been the subject of intensive research. A flow cytometry-based assay using native full-length SARS-CoV-2 Spike protein expressed in 293 T cells was recently proposed as a complementary seropositivity assay. The aim of our study was to further develop the flow cytometry assay and to standardize its parameters for reliable inter-laboratory use. We have optimized the protocol, established the Receiving Operating Characteristic (ROC) curve and tested reproducibility using pre-COVID and convalescent, SARS-CoV-2 individual plasma samples. The flow-based assay was simplified and standardized by cultivating the 293 T cells in suspension and expressing results in Mean Equivalent Soluble Fluorochrome (MESF) using an internal antibody positive control. The ROC curve was determined with an area under the curve (AUC) of 0.996 and the assay specificity and sensitivity were established at 100% and 97.7% respectively. Reproducibility was good as determined on multiple cytometers, on different days, and with data acquisition as far as 72 h post-staining. The standardized assay could be used as a high throughput confirmatory assay in flow cytometry laboratories involved in serological testing. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-021-00511-1.

18.
Cell Rep ; 38(2): 110210, 2022 01 11.
Article in English | MEDLINE | ID: covidwho-1568559

ABSTRACT

Emerging variants of concern for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can transmit more efficiently and partially evade protective immune responses, thus necessitating continued refinement of antibody therapies and immunogen design. Here, we elucidate the structural basis and mode of action for two potent SARS-CoV-2 spike (S)-neutralizing monoclonal antibodies, CV3-1 and CV3-25, which remain effective against emerging variants of concern in vitro and in vivo. CV3-1 binds to the (485-GFN-487) loop within the receptor-binding domain (RBD) in the "RBD-up" position and triggers potent shedding of the S1 subunit. In contrast, CV3-25 inhibits membrane fusion by binding to an epitope in the stem helix region of the S2 subunit that is highly conserved among ß-coronaviruses. Thus, vaccine immunogen designs that incorporate the conserved regions in the RBD and stem helix region are candidates to elicit pan-coronavirus protective immune responses.

19.
Cell Host Microbe ; 30(1): 97-109.e5, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1549683

ABSTRACT

The standard regimen of the BNT162b2 mRNA vaccine for SARS-CoV-2 includes two doses administered three weeks apart. However, some public health authorities spaced these doses, raising questions about efficacy. We analyzed longitudinal humoral responses against the D614G strain and variants of concern for SARS-CoV-2 in a cohort of SARS-CoV-2-naive and previously infected individuals who received the BNT162b2 mRNA vaccine with sixteen weeks between doses. While administering a second dose to previously infected individuals did not significantly improve humoral responses, these responses significantly increased in naive individuals after a 16-week spaced second dose, achieving similar levels as in previously infected individuals. Comparing these responses to those elicited in individuals receiving a short (4-week) dose interval showed that a 16-week interval induced more robust responses among naive vaccinees. These findings suggest that a longer interval between vaccine doses does not compromise efficacy and may allow greater flexibility in vaccine administration.


Subject(s)
BNT162 Vaccine/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Immunity, Humoral/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , Female , Humans , Male , Middle Aged , Vaccination/methods , Young Adult
20.
Sci Adv ; 7(48): eabj5629, 2021 Nov 26.
Article in English | MEDLINE | ID: covidwho-1537882

ABSTRACT

Despite advances in COVID-19 management, identifying patients evolving toward death remains challenging. To identify early predictors of mortality within 60 days of symptom onset (DSO), we performed immunovirological assessments on plasma from 279 individuals. On samples collected at DSO11 in a discovery cohort, high severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA (vRNA), low receptor binding domain­specific immunoglobulin G and antibody-dependent cellular cytotoxicity, and elevated cytokines and tissue injury markers were strongly associated with mortality, including in patients on mechanical ventilation. A three-variable model of vRNA, with predefined adjustment by age and sex, robustly identified patients with fatal outcome (adjusted hazard ratio for log-transformed vRNA = 3.5). This model remained robust in independent validation and confirmation cohorts. Since plasma vRNA's predictive accuracy was maintained at earlier time points, its quantitation can help us understand disease heterogeneity and identify patients who may benefit from new therapies.

SELECTION OF CITATIONS
SEARCH DETAIL